



# A Second-Order Approach to Learning with Instance-Dependent Label Noise

Zhaowei Zhu<sup>†</sup>, Tongliang Liu, and Yang Liu<sup>†</sup> <sup>†</sup>University of California, Santa Cruz, {zwzhu,yangliu}@ucsc.edu <sup>§</sup>The University of Sydney, tongliang.liu@sydney.edu.au

## Paper & Code:

**Benefits**: CAL is a "soft" correction (vs. "hard" label correction) • Use an average term, less sensitive to estimation of each instance

- Tolerant of inaccurate D

### Algorithm (Sketch)

### **Theoretical Guarantee**

### **Theorem:**

1) With perfect covariance estimates,  $\mathbb{1}_{CAL}$  is robust to IDN (induces the Bayes optimal classifier).

| Table: Comparison of test accuracies $(\%)$ using different methods. |                  |                    |                                    |                    |                                    |                    |
|----------------------------------------------------------------------|------------------|--------------------|------------------------------------|--------------------|------------------------------------|--------------------|
| Method                                                               | Inst. CIFAR10    |                    |                                    | Inst. CIFAR100     |                                    |                    |
|                                                                      | $\eta = 0.2$     | $\eta = 0.4$       | $\eta = 0.6$                       | $\eta = 0.2$       | $\eta = 0.4$                       | $\eta = 0.6$       |
| CE (Standard)                                                        | 85.45±0.57       | $76.23{\pm}1.54$   | 59.75±1.30                         | $57.79 {\pm} 1.25$ | $41.15 {\pm} 0.83$                 | $25.68{\pm}1.55$   |
| Forward $T$ [2]                                                      | $87.22{\pm}1.60$ | $79.37{\pm}2.72$   | $66.56{\pm}4.90$                   | $58.19{\pm}1.37$   | $42.80{\pm}1.01$                   | $27.91{\pm}3.35$   |
| T-Revision [3]                                                       | $90.04{\pm}0.46$ | $84.11 {\pm} 2.47$ | $72.18{\pm}2.47$                   | $58.00 {\pm} 0.36$ | 43.83±8.42                         | $36.07 {\pm} 9.73$ |
| Peer Loss [4]                                                        | $89.12{\pm}0.76$ | $83.26 {\pm} 0.42$ | $74.53{\pm}1.22$                   | $61.16{\pm}0.64$   | $47.23 {\pm} 1.23$                 | $31.71 {\pm} 2.06$ |
| $CORES^2$ [5]                                                        | $91.14{\pm}0.46$ | $83.67 {\pm} 1.29$ | $77.68{\pm}2.24$                   | $66.47 {\pm} 0.45$ | $58.99{\pm}1.49$                   | $38.55 {\pm} 3.25$ |
| CAL                                                                  | 92.01±0.75       | $84.96{\pm}1.25$   | $\textbf{79.82}{\pm}\textbf{2.56}$ | $69.11{\pm}0.46$   | $\textbf{63.17}{\pm}\textbf{1.40}$ | 43.58±3.30         |

"Classification with noisy labels by importance reweighting."

[1] T. Liu & D. Tao. *TPAMI'15*. [2] G. Patrini, et al. "Making deep neural networks robust to label noise: A loss correction approach." CVPR'17. [3] X. Xia, et al. "Are anchor points really indispensable in label-noise learning?" NeurIPS'19. [4] Y. Liu & H. Guo. "Peer loss functions: Learning from noisy labels without knowing noise." *ICML'20*. [5] H. Cheng, et al. "Learning with instance-dependent label noise: A sample sieve

approach." ICLR'21.

Related other works from our lab •  $CE \rightarrow f$ -divergence: When optimizing f-divergence is robust with label noise, *ICLR'21* • Estimate transition matrix with clusterability: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels, ICML'21

Acknowledgement: Supported in part by National Science Foundation (NSF) under grant IIS-2007951, and in part by Australian Research Council Projects, i.e., DE-190101473.





1. Construct  $\hat{D}$  (unbiased estimate of  $D^* \sim \mathcal{D}^*$ ) with sample sieve [5] 2. Estimate (unbiased)  $\hat{T}$  with  $\hat{D}$  (complexity O(SampleSize)) 3. [Train DNN] Implement CAL in SGD (each point O(1) complexity)

2) With imperfect covariance estimates, error rate can be upper bounded.

### Experiments

### **Relevant Works**